Mitochondrial and cytosolic isoforms of yeast fumarase are derivatives of a single translation product and have identical amino termini.

نویسندگان

  • E Sass
  • E Blachinsky
  • S Karniely
  • O Pines
چکیده

We have previously proposed that a single translation product of the FUM1 gene encoding fumarase is distributed between the cytosol and mitochondria of Saccharomyces cerevisiae and that all fumarase translation products are targeted and processed in mitochondria before distribution. Alternative models for fumarase distribution have been proposed that require more than one translation product. In the current work (i) we show by using sequential Edman degradation and mass spectrometry that fumarase cytosolic and mitochondrial isoenzymes have an identical amino terminus that is formed by cleavage by the mitochondrial processing peptidase, (ii) we have generated fumarase mutants in which the second potential translation initiation codon (Met-24) has been substituted, yet the protein is processed efficiently and retains its ability to be distributed between the cytosol and mitochondria, and (iii) we show that although a signal peptide is required for fumarase targeting to mitochondria the specific fumarase signal peptide and the sequence immediately downstream to the cleavage site are not required for the dual distribution phenomenon. Our results are discussed in light of our model of fumarase targeting and distribution that suggests rapid folding into an import-incompetent state and retrograde movement of the processed protein back to the cytosol through the translocation pore.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual targeting of isoleucyl-tRNA synthetase in Trypanosoma brucei is mediated through alternative trans-splicing

Aminoacyl-tRNA synthetases catalyze the aminoacylation of tRNAs with their cognate amino acids. They are an essential part of each translation system and in eukaryotes are therefore found in both the cytosol and mitochondria. Thus, eukaryotes either have two distinct genes encoding the cytosolic and mitochondrial isoforms of each of these enzymes or a single gene encoding dually localized produ...

متن کامل

Metabolic compartmentation of vertebrate glutamine synthetase: putative mitochondrial targeting signal in avian liver glutamine synthetase.

The evolution of uricoteley as a mechanism for hepatic ammonia detoxication in vertebrates required targeting of glutamine synthetase (GS) to liver mitochondria in the sauropsid line of descent leading to the squamate reptiles and archosaurs. Previous studies have shown that in birds and crocodilians, sole survivors of the archosaurian line, hepatic GS is translated without a transient, N-termi...

متن کامل

Fumarase: A Mitochondrial Metabolic Enzyme and a Cytosolic/Nuclear Component of the DNA Damage Response

In eukaryotes, fumarase (FH in human) is a well-known tricarboxylic-acid-cycle enzyme in the mitochondrial matrix. However, conserved from yeast to humans is a cytosolic isoenzyme of fumarase whose function in this compartment remains obscure. A few years ago, FH was surprisingly shown to underlie a tumor susceptibility syndrome, Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC). A bialle...

متن کامل

The mitochondrial targeting sequence tilts the balance between mitochondrial and cytosolic dual localization.

Dual localization of proteins in the cell has appeared in recent years to be a more abundant phenomenon than previously reported. One of the mechanisms by which a single translation product is distributed between two compartments, involves retrograde movement of a subset of processed molecules back through the organelle-membrane. Here, we investigated the specific contribution of the mitochondr...

متن کامل

Two isoforms of Saccharomyces cerevisiae glutaredoxin 2 are expressed in vivo and localize to different subcellular compartments.

Glutaredoxin (Grx)2 from Saccharomyces cerevisiae is a member of the two-cysteine (dithiol) subfamily of Grxs involved in the defence against oxidative stress in yeast. Recombinant yeast Grx2p, expressed in Escherichia coli, behaves as a 'classical' Grx that efficiently catalyses the reduction of hydroxyethyl disulphide by GSH. Grx2p also catalyses the reduction of GSSG by dihydrolipoamide with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 276 49  شماره 

صفحات  -

تاریخ انتشار 2001